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Abstract

In this paper, we discuss the difficulties of building reliable machine translation
(MT) systems for the English-Irish (EN-GA) language pair. In the context of
limited datasets, we report on assessing the use of backtranslation as a method
for creating artificial EN-GA data to increase training data for use in state-of-
the-art data-driven translation systems. We compare our results to our earlier
work on EN-GA machine translation (Dowling et al. 2016; 2017; 2018) showing
that while our own systems underperform with respect to traditionally
reported automatic evaluation metrics, we provide a linguistic analysis to
suggest that future work with domain-specific data may prove more successful.
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1. Introduction

MT is a well-established tool in the post-editing environment of a professional translator.
However, as a lesser-resourced and minority language, the Irish language has not enjoyed the
benefits of technological advancements in the field of MT to the same extent that well-resourced
languages (such as English) have. The status of Irish as the national and first official language of
the Republic of Ireland, as well as an official European Union (EU) language, means a government

requirement for all official documents and public services to be made accessible in both Irish and
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English.! At present, the demand for bilingual content exceeds the productivity capabilities of
translation services in Irish government departments and cannot be fully met by human
translators alone. This will become more severe once the derogation granted to the Irish
language runs out in 2021. Accordingly, we contend that this increasing imbalance between
supply and demand necessitates a technology-orientated solution, which we explore in this
paper. If done properly, EN-GA MT will be invaluable in meeting the language rights needs of Irish
speakers. Our work aims to improve EN-GA MT so that it may be used as a more reliable practical
aid in the production of translations at a national and European level. Our research focuses on
examining a number of possible ways to improve EN-GA MT. This includes both experimenting
with MT infrastructures and also investigating the current resources available for this language

pair.

Both commonly used MT paradigms - statistical machine translation (SMT) and neural machine
translation (NMT) - need to be ‘trained on’ a huge amount of data (i.e. high quality bilingual
corpora) to produce quality translations. In recent years, there has been a shift towards the use
of NMT, which is the most widely used MT paradigm at the moment. However, because NMT
requires even more parallel (bilingual) data than SMT it exacerbates the problem of data sparsity
(see Section 2 for a detailed explanation). Recently Dowling et al. (2018) carried out an
assessment of the suitability of NMT with the EN-GA language pair. The preliminary results of this
study showed that, although NMT results were not seen to rival that of SMT, improvements could

be seen when steps were taken to optimise the NMT system.

The aim of the research presented in this paper is to build on this study by addressing the area
of data sparsity through backtranslation, a method of creating artificial parallel data through the
translation of monolingual data using pre-built MT systems (Poncelas et al. 2018 - see Section 6
for a detailed description). The premise of this method is that even if the data is not of human

quality, the MT system can still draw benefits from the extra data. Another possible advantage

1 The Official Languages Act (2003) requires all official public information and services to be available in
both Irish and English: http://www.irishstatutebook.ie/eli/2003/act/32/enacted/en/html
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of backtranslation is that it can be used to combine SMT and NMT, and in theory combine the

benefits of each approach.

SMT is a method of creating an MT model based on statistics and probability. SMT uses
monolingual text to build a language model, which models what accurate sentences in the target
language should look like. It also requires a large amount of bilingual text, known as a parallel
corpus, to statistically compute the probability of translations. This is known as a translation

model. See Hearne and Way (2011) for a detailed guide to SMT.

. PARALLEL CORPUS
lonchur Gaeilge

when you buy goods or nuair a cheannaionn t0

services you enter into a earrai nd seirbhis déanann

TRANS LAT' O N contract with the supplier t0 conradh le solathrai na

of goods and services , n-earral na na seirbhisi sin

M O D EL when you engage a Jnuair a théann t0 i mbannai

service supplier you create  solathrai seirbhise

& contract between you | cruthaionm W conradh idir t0

as a consumer | and the fain , mar thomhaltoir , agus
sarvice supplier . solathrai na seirbhisa .

MONOLINGUAL CORPUS

Is & rud is matamaitic ann na staidéar ar phatriin
struchtuir, ar phatriin athraithe, agus ar phatriin
' LAN G UAG E spais. Tagann an focal “matamaitic™ on nGréigis
paBnpa (mathama), agus ciallaionn sé "eolaiocht,
M O D EL eolas, nd foghlaim”. Ga neamhb-fhairmidil d'fheadfa a
ra gurb iad uimhraacha agus cld a habhar staidéir.
E ng||3h output Dar lao sitd ar a nglacitear na foirmidlaigh, is taighde

i de struchtiir kelbl atd sainithe go halcsimiteach agus
ata bunaithe ar lolghic agus ar nodaireacht na
matamaitice.

Figure 1: Simplified diagram of SMT

NMT (Sutskever et al. 2014; Bahdanau et al. 2015) also uses parallel text to train a translation
model, but the model is trained using neural networks. There are a number of ways to train an
NMT system, the most common following the ‘encoder-decoder’ methodology. A simplified
diagram of an encoder-decoder NMT system can be seen in Figure 2. The input text is first
encoded into a non-word representation suitable for translation — generally a vector of real
numbers. This representation can then be decoded into the target-language text (i.e. translated
text). See Forcada (2017) for a detailed introduction to NMT. Some reported strengths of NMT
include a perceived increase in fluency and a higher accuracy according to automatic metrics over

a variety of language pairs (Castilho et al 2017; Bojar et al. 2016). Some weaknesses of NMT are
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a loss of semantics (the output looks fluent but has a different meaning - see Section 7.1) and

overtranslation (the same word appearing more than once in the output).

-0.2
Input o Translated
ﬁ Encoder 0.4 Decoder ﬁ
text -0.3 text
1Ll

Figure 2: Diagram of encoder-decoder style NMT system

This paper is structured as follows: Section 2 provides a background on Irish MT efforts to date.
Section 3 discusses related work in the MT field, while Section 4 discusses features of the Irish
language which can pose a challenge for MT. Section 5 describes the collection of monolingual
and bilingual datasets to be used in MT experiments. In Section 6 we give a description of the
backtranslation methodology used, and provide results of MT experiments involving
backtranslation in Section 7. Finally, in Section 8 we offer some conclusions and provide an insight

into possible areas of future work.

2. Background

As explained in Section 1, the availability of language data (monolingual and bilingual text) is of
huge importance in building MT systems. Despite language collection efforts, EN-GA MT still
suffers from a lack of data. This is sometimes described as data sparsity. Data sparsity is a two-
fold problem for EN-GA MT. The first part pertains to the availability of language data. As
mentioned earlier, both SMT and NMT rely on large amounts of parallel data. If the amount of
data available to train the translation models with is sparse, then it is much more difficult to
achieve quality translations. The other aspect of data sparsity that affects EN-GA MT relates to

the fact that Irish is more heavily inflected than English, i.e. for one Irish lemma there could be
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many surface forms. This can lead to a ‘one-to-many’ translation situation, whereby a single word
in English could have many different Irish translations, depending on the context. This makes it
more difficult for MT systems to ‘learn’ the correct translations, further highlighting the need for

more EN-GA data.

One method commonly used to improve the quality of low-resource MT is to focus on tailoring a
system to a particular domain.? A recent pilot study that involved the development of the
Tapaddir® system has shown domain-tailored MT to be useful in the post-editing environment of
an official Irish government department,* where the translation of EN-GA documents has been
facilitated by SMT (see Dowling et al. 2016 for a detailed description). The success of this domain-
specific SMT system is due in part to the availability of high-quality parallel data in this particular
domain (Irish public administration). This exploratory study has shown that introducing MT into
the workflow of English-Irish translators within an Irish government department is beneficial, yet

contains scope for improvement.

Another method for dealing with data sparsity is making concerted efforts with respect to data
collection. Within a European setting, the availability of bilingual EN-GA text is limited. There is a
derogation currently in place with respect to the production of Irish language content within the
EU, meaning that very little Irish language content is produced in comparison to other official EU
languages (Interinstitutional style guide 2011). This derogation is due to be lifted at the end of
2021, at which point there will be a significant increase in the number of translators needed,
compared to current requirements. While efforts are underway to increase the number of
translators available (e.g. a new MA in translation®) meeting the quota necessary to produce this
volume of translations will still prove to be challenging without adequate technology. The NMT-

based eTranslation system in use by the Directorate General for Translation (DGT) is still in its

2 Typical domains include legal, news, literary, etc.
From the Irish ‘tapa’ meaning ‘fast’ and the nominal suffix ‘6ir’.

4 The Department of Culture, Heritage and the Gaeltacht (DCHG). DCHG is the Irish government department
responsible for promoting, protecting and advancing the use of the Irish language.

5 http://www.nuigalway.ie/courses/taught-postgraduate-courses/ translation-studies.html
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early days of uptake, partly due to the lack of data available to train it (CEF Digital 2019).

Unable to rely on using official EU translation data alone to train EN-GA MT systems, other
methods must be employed in order to develop the size of GA datasets. Ireland’s participation in
the European Language Resource Coordination (ELRC)® is facilitating this development. The ELRC
is a European Commission-led effort to collect language resources for official EU languages, with
a view to ensuring that all EU Digital Service infrastructures (such as elustice, eProcurement etc)
will be accessible in all EU languages via the eTranslation system. The ELRC has also made the
collected data available within Ireland to improve MT at a national level. The extent to which the

ELRC data collection efforts impact our research is discussed in Section 5.2.

3. Related Work in MT

As discussed in Section 1, currently the primary focus of the application of Irish MT is within the
context of a professional translation workflow (involving post-editing by human translators), and
as such, progress in this area in terms of advances in state-of-the-art approaches is of interest to
us. For many years, there have been extensive studies to show how the integration of MT within
such a workflow (often complementary to the use of translation memory (TM) tools) improves
productivity, both in industry-based and in academic-based research (e.g. Arenas 2008;

Etchegoyhen et al. 2014).

With the introduction of deep learning methods in recent years, we have witnessed a
breakthrough in the field of MT. NMT is increasingly showing more positive results and has been
seen to outperform SMT across a number of language pairs and domains (Bojar et al. 2016). This
has led to the need for subsequent studies examining the differences between the impact that
SMT and NMT have within such a setting. For example, Bentivogli et al. (2016) carried out a small-
scale study on post-editing of English-German translated TED talks, and concluded that NMT had
led to significant improvements in the translation quality. Bojar et al. (2016) report a significant

step forward using NMT instead of SMT in automatic post-editing tasks (in terms of lexical

6 http://www.Ir-coordination.eu/
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selection, word order, etc.) at the Conference on Statistical Machine Translation (WMT16).” More
recently, Castilho et al. (2017) carried out a more extensive quantitative and qualitative
comparative evaluation of SMT and NMT using automatic metrics and professional translators.
Results were mixed overall. They varied from showing positive results for NMT in terms of
improved (perceived) fluency and errors, to achieving no particular gains over SMT at document
level for post-editing. While these studies were carried out on better resourced language pairs
(English-German, -Portuguese, -Russian and -Greek), they are still highly relevant in indicating the

potential impact that the change in MT approaches can have in real-life translation scenarios.

Despite promising results, the positive impact of NMT is not being felt across the board. In
previous work (Dowling et al. 2018) we began to explore whether NMT is a viable paradigm for
EN-GA MT and concluded that while there is great potential for EN-GA NMT, SMT currently
outperforms it in a domain-specific scenario. As Koehn and Knowles (2017) highlight, current
NMT systems can face a number of challenges when dealing with specific tasks. These challenges
include low-resource languages, low-frequency words arising from inflection, long sentences,
and out-of-domain texts. Sennrich et al. (2016) take steps toward addressing the challenge of MT
in a low-resource scenario. They present the use of backtranslation to create artificial bilingual
corpora with which to train MT systems. Poncelas et al. (2018) further this strand of research by
investigating the effects of this type of data on NMT systems. In this article we investigate the
impact of backtranslation on EN-GA MT and identify whether it is a viable method for artificial

data creation.

4. Features of the Irish language that can pose a challenge for MT
As well as being a low-resource language, there are some linguistic features of the Irish language
that pose a challenge for MT. In this section we outline some of the linguistic-based challenges

that we have attempted to address.

One feature of Irish that can have an effect on EN-GA MT quality is its inflected nature. Irish words

7 http://www.statmt.org/wmt16/
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can inflect for number, tense, person, case, mood and gender. Some ways that Irish words inflect
include lenition (the infixing of a ‘h” after the first consonant), eclipsis (a type of initial mutation
where a letter is added to the beginning of the word) and slenderisation (changing a ‘broad’
vowel (‘a’, ‘0’ or ‘U’) to a ‘slender’ vowel (‘I’ or ‘e’)). A typical example of noun inflection can be
seen in Example (1), using the feminine noun ‘beach’, meaning bee.® As discussed in Section 2,
this can lead to data sparsity wherein inflected words are seen infrequently in the training data
and the incorrect inflection is often produced in the MT output. Inflection (bheach), eclipsis

(mbeach) and slenderisation (beiche) can all be seen in this example.

(1)

beach bee/a bee

an bheach the bee

beacha bees

dath na beiche the colour of the bee
dath na mbeach the colour of the bees

Inflection has also been shown to have an impact on automatic MT evaluation metrics such as
BLEU (Papineni et al. 2002). Test data, a bilingual corpus deemed to be ‘gold standard’ quality
translation, is used to generate BLEU scores. The source language of the test data is translated,
producing an MT output in the target language. This is then compared to the target-language
portion of the test data to generate a BLEU score of between 0 and 100. The higher the score,
the closer the MT output is to the reference translation. A shortcoming of BLEU is that it considers
inflected words as being wholly different from their uninflected counterparts, and can sometimes
penalise translation output too harshly as a result (Callison-Burch et al. 2006). For example, if an
MT system were to output ‘an beach* as the translation for ‘the bee’ and the reference
contained ‘an bheach’ then BLEU would consider ‘beach’ as being completely incorrect. It would
score it identically if the MT output contained completely unrelated words such as ‘an fear’ (‘the

man’), ‘an cdca’ (‘the cake’), ‘an guthdn ’ (‘the phone’), etc., even though it is clear to an Irish

8 For clarity, the inflection markers (letters) in each example are displayed in bold
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speaker that ‘an beach’ is more correct and would require much less post-editing effort. In this
study we take steps towards addressing data sparsity by increasing the size of our datasets

through the creation of artificial data with backtranslation.

Inflection can also be seen in Irish verbs. Example (2) shows the regular verb ceannaigh, ‘to buy’,
inflecting for person and tense (in this case, the conditional mood). In this example, ‘would buy’
in English could be translated in 5 different ways in Irish, depending on the context. This is called
a ‘one-to-many translation’ where the MT system is expected to learn many possible translations
for one input. This is another example of the aspect of data sparsity in EN-GA MT, where some
but not all of the Irish forms may be present in the training data, as discussed in Section 2. One
possible way to minimise the effects of cases like this would be to use byte pair encoding (BPE;
see Gage 1994; Sennrich et al. 2016). BPE is a pre-training step, where words are broken into
subword units. These subword units, which are generated statistically, are not necessarily
morphemes. For example, after BPE ‘furious green ideas’ might look like ‘| fu | rio | us | green |
id | ea | s |’. The premise of this method is that there is a higher chance of a subword being
present in the training data rather than a full word, particularly if the language being translated
is morphologically rich. Although the addition of BPE in previous EN-GA NMT experiments
(Dowling et al. 2018) showed minimal improvements in BLEU score, it is expected that as

language data resources increase, the improvement may become more substantial.

(2) Cheanndinn | would buy
Cheanndfa You would buy

Cheannédh sé/si He/she would buy
Cheanndimis We would buy
Cheannédh sibh You (plural) would buy
Cheanndidis They would buy

Another challenge for building EN-GA MT systems is the divergent word order between English

and Irish. Irish follows a verb-subject-object (VSO) sentence structure, differing from the subject-
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verb-object (SVO) structure of English, as illustrated in Figure 3.

Chuala sé scéal nua

He heard a new story

Figure 3: An example sentence highlighting the divergent word order between Irish and English

This difference in sentence structure can negatively impact MT quality, especially when
translating longer sentences (Koehn and Knowles 2017). This is particularly true for SMT, which
only considers a fixed number of words at a time when calculating translations. This number of
words is known as an n-gram. For example, if the default 3-gram is used, the MT system will
consider 3 words at a time (e.g. from Example (3) ‘Chuala an fear,” ‘an fear leis,” ‘fear leis an,” ‘leis
an bhféaség’ ,’ and so on). This can be a problem when translating between languages with
divergent word orders. If an SMT system using a 3-gram model attempted to translate Example
(3), ‘chuala’ and ‘heard’ (marked in bold) would be too far away from each other to be considered
as translations. In an effort to address this divergence in word order, Dowling et al. (2017)
implemented a 6-gram language model in their SMT systems. We apply the same language model

in our own experiments reported here.

(3) Chualaan fear leis an bhféasdg scéal nua.
Heard the man with the  beard story new.

‘The man with the beard heard a new story.’

This issue of MT of languages with different word orders is exacerbated when translating more
complex sentences. For example, in Irish, there are two forms of the verb ‘to be’, the substantive
verb and the copula. A sentence with a copula construction can be seen in Example (4). When

compared to Example (5) which uses the copula, the English sentence structures are very similar,
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whereas the Irish sentences are very different, with Example (5) using the substantive verb (‘td’).
It is clear that this would be a difficult scenario for MT to consistently translate correctly.
However, while SMT has earned the reputation of outputting sometimes overly-direct
translations, NMT is much better equipped to identify context-dependent patterns. This leads us
to predict that NMT may be more successful than SMT at identifying the cases in which the
copula, rather than the substantive verb, is the correct structure to produce. It is our hope that,
by increasing parallel data through collection efforts and backtranslation, there will be sufficient
EN-GA data to build NMT systems that are better equipped to identify and produce these

constructions.

(4) Is scoldire i
Is scholar she

‘She is a scholar.’

(5) Ta si beo
Is she alive

‘She is alive.’

We note that this is not an exhaustive list of the complex Irish features that can have an impact

on MT, rather the specific ones that we have taken steps to address to date.

5. Data

As mentioned in Section 2, both SMT and NMT rely on large amounts of bilingual data to train a
system. A lack of suitable training data can lead to poor quality MT systems. In addition, many
recent techniques for improving MT quality, especially those pertaining to NMT, require a large
amount of data before their benefits can be seen. Therefore, a crucial step in the development

of EN-GA MT is to gather and curate suitable EN-GA data resources.
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5.1. Baseline resources

We take our previous work on the Tapaddir system as a baseline comparison for our studies
(Dowling et al. 2016). During the Tapaddir SMT project, parallel and monolingual datasets were
identified and gathered (see Table 1) in order to build a baseline system. A baseline system is
necessary in MT experiments to monitor the effect of various datasets and changes in MT
approaches on the output. We describe their datasets here to fully explain the basis of

comparison and the data used in this current study.

The resources available from that project are the following: (i) the largest corpora in the Tapaddir
project, are the TMs (bilingual files containing previous translations by inhouse translators)
provided by DCHG. This corpus is referred to as DCHG in Table 1: (ii) Corpas Comhthreomhar
Gaeilge-Bearla (CCGB) is a bilingual dataset obtained through web-crawling, and is available for
download online?; (iii) Parallel texts from two EU bodies — the Digital Corpus of the European
Parliament and Directorate General for Translation, Translation Memories — are also publicly
available (these datasets are referred to collectively as EU in Table 1); (iv) Another dataset
available is the Parallel English—Irish corpus of legal texts (referred to as ‘Gaois’ in Table 1) made
available online by the Department of Justice.'? The language used is very technical and contains
much ‘legalese’, or legal jargon. (v) As well as this, 10,000 parallel sentences were crawled from
the Citizens Information website,!! referred to as CitizensInfo in Table 1. All datasets apart from
DCHG are either publicly available online or available to webcrawl. It is our hope that in the
future, following consultation with the data holders and anonymisation of the data, we may be
able to publish the DCHG dataset. Dowling et al. (2016) provide detailed results of building MT

systems using these datasets.

Corpus # of words (GA) # of sentences
DCHG 440,035 29,000
9 https://github.com/kscanne/ccgb
10 https://www.gaois.ie/crp/en/data/
11 http://www.citizensinformation.ie
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CCGB 113,889 6,000
EU 439,262 29,000
Gaois 1,526,498 89,000
CitizensiInfo 183,999 10,000
TOTAL 2,703,683 163,000

Table 1: Baseline datasets

5.2. Tapaddir version 2 resources

While the resources mentioned in Section 5.1 can be used to build a promising baseline system,
these datasets were expanded through further data-gathering efforts by Dowling et al. (2018).
This was achieved through 1) directly contacting organisations which deal with Irish-language

content and 2) web-crawling.

5.2.1. Through direct contact with organisations

DCHG: Following on from the existing collaboration with DCHG during the Tapaddir project,
DCHG continue to provide us with TMs created by their team of in-house translators. This data,
translated by professional translators within the setting of a government department, can be
described as being ‘gold-standard’, i.e. of a high enough quality that it is suitable for use as both
training and testing datasets for MT. As well as the original DCHG corpus (see Table 1) two
additional corpora have been collected from DCHG. These are referred to as DCHGt and DCHGt+

respectively, in Table 2.

ELRC: As one of the 24 official EU languages, Irish is included in the ELRC project, which seeks to
gather language technology resources in order to provide suitable digital facilities for all
European citizens. With the added weight of an official EU project, the ELRC representatives in
Ireland contacted Irish language organisations and public bodies that have obligations to provide
Irish-language content in order to request language data from them. This involved the
organisation of two workshops aimed at educating language holders on the value of language

technology and resource sharing, as well as directly contacting or visiting organisations to aid
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them in identifying and sharing corpora. The data they collected was extremely varied, both in
terms of quantity and format. While only a small number of datasets collected during the ELRC
project have been included in our MT experiments to date (data from the University Times,*2
referred to as ‘UT’ in Table 2 and data from Conradh na Gaeilge,*3 referred to as ‘CnaG’ in Table
2), this project, now in its second phase, is expected to continue to identify language data holders
and increase the amount of monolingual and bilingual data available for EN-GA. The National
Corpus of Ireland (NCI) is a large monolingual corpus of Irish which Foras na Gaeilge contributed
to the ELRC project. It contains 1,994,081 Irish sentences (see Table 2). The domain of this corpus
can be described as ‘mixed’ or ‘general’, as it contains poetry, literature and news articles, among

many other types of content.

5.2.2. Web-crawling

Web-crawling is a common method for collecting bilingual data from websites for language pairs
that may be lacking in resources. With both Irish and English as official languages of Ireland, many
public websites have an obligation to provide online content bilingually. In Dowling et al. (2016),
we report on a list of websites that could contain bilingual content and crawled them using the
ILSP crawler (see Papavassiliou et al. 2013). The resulting corpora were reported to be often of
mixed quality; common issues included misalignment (mismatched translations), comparable
(similar content rather than truly parallel) content, noisy data (containing HTML markup, typos,
etc.) and crawling failure. In addition, while the crawler relies on consistency in webpage labelling
that clearly indicates the content’s language, this is not the case for many Irish websites. A pre-
processing stage was introduced before adding this data to be used for MT development. This
stage involved full cleaning (removal of formatting such as XML or HTML tags) and accurate
manual alignment. A further 4,028 parallel sentences from various sources were obtained
through crawling (referred to as ‘Crawled’). Their additional crawled datasets are referred to as

‘IT”*% and ‘Teagasc’?” in Table 2.

12 University Times is the student newspaper in Trinity College Dublin.

13 Conradh an Gaeilge is an organisation which promotes the use of the Irish language.

14 The Irish Times (IT) is a national newspaper in Ireland.

15 Teagasc is the state agency providing research, advisory and education in agriculture, horticulture, food
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Corpus # of words (GA) # of sentences
DCHGT 243,372 13,500
DCHGt* 402,210 23,714
ut 15,377 598

CnaG 21,365 1,367
Crawled 70,773 4,028
Teagasc 32,908 1,473

IT 57,314 2,694

EU 483,149 29,445
NCI 18,964,885 1,994,081
TOTAL 17,861,353 2,070,900

Table 2: Size of additional resources gathered

It can be seen from the final row in Table 2 a total of 17,861,353 GA words of data were used for
MT training. Results from building engines using combinations of this data can be seen in Dowling

et al. (2016), (2017) and (2018).

5.3. Test data

In order to test the Tapaddir system, in previous work we held out a random sample of 1,500
sentence pairs received from DCHG from the training set to form the test set. The test set is
therefore domain-specific, and representative of the type of texts the Tapaddir system is
expected to translate (letters, reports, press releases, etc.). We use the same test set in our

current study in order to make a clear comparison.

6. Back Translation Experiment Set-Up

While data collection efforts are extremely important in the context of resource-poor MT, it can

and rural development in Ireland.
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be time-consuming and not always result in an improvement in the quality of MT output. The
creation of artificial data is a quick, experimental way of increasing the amount of bilingual data
available for a language pair. This section describes the methodology used for the creation of EN-

GA artificial data through backtranslation.

6.1. Data

The data used for building the GA-EN SMT system is listed in Table 2 (the same as that used by
Dowling et al. (2018), which is in the public administration domain, specifically DCHG). For
consistency, the same datasets were used in the creation of the baseline NMT system, with the
exception of monolingual data. Monolingual data is not usually used in the training of an NMT
system. However, it is required for use in backtranslation experiments. It is preferable to use as
large a corpus as possible in these experiments to maximise the amount of artificial parallel data

created.

6.2. Setup and Methodology

Figure 4 illustrates a simplified version of the backtranslation method implemented. In Step (1),
authentic parallel data (bilingual text usually translated by professional translators) is used to
train a GA-EN SMT system. As shown in Step (2), a large monolingual corpus is then machine-
translated using this SMT system. This creates an artificial parallel corpus: genuine Irish language
text on one side and machine-translated English text on the other. Finally, in Step (3), this artificial
corpus is used to train an EN-GA NMT system. Being the largest corpus of monolingual Irish data,
the NCI corpus (see Table 2) was identified as a suitable starting point for the creation of artificial
bilingual data. Previous experiments (Dowling et al. 2018) suggest that SMT outperforms NMT
when dealing with this language pair. For this reason, we translate the NCI corpus using a GA-EN
SMT system. We then train EN-GA NMT systems using differing ratios of artificial data to
authentic data. Applying a similar method to that used by Poncelas et al. (2018), we first begin
with a 1:1 ratio of artificial versus authentic training data, and iteratively add more data until the
entire monolingual corpus has been fully translated and all artificial parallel data has been added

to the training data.
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Figure 4: Simplified backtranslation diagram
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7. Results and Preliminary Analysis

The test set described in Section 5.3 was used to obtain BLEU scores for each backtranslation
experiment. The results of these experiments are shown in Figure 5, in which we also provide the
baseline NMT score with no artificial data added (0:1 ratio) as reported by Dowling et al. (2018).
These results show that, contrary to related research, the inclusion of back-translated data does
not improve the BLEU score of EN-GA NMT when using these datasets and configuration. It can
be seen from both Table 3 and Figure 5, that the higher the ratio of artificial to authentic data,
the more the MT output decreases in BLEU score. As a marker of sufficient BLEU quality, Escartin
et al. (2015) indicate that for the Spanish-English pair, a BLEU score of 45+ can increase translator
productivity. Although these experiments have not been repeated with EN-GA, we can take this
score as a rough guideline. The BLEU scores achieved using backtranslation fall below this
threshold, and continue to fall as more artificial data is added. This could indicate that the MT
systems trained using backtranslation data would not be suitable in the post-editing workflow of

a professional translator.

0:1 11 20 3 411

NCI:1

40

BLEU

w
=]

5

ra

Ratio of artificial to authentic data

Figure 5: Barchart displaying BLEU scores of backtranslation MT systems, with the NMT system

from Dowling et al., 2018 as a comparison
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MT SYSTEM BLEU
SMT-baseline 39.36
SMT-best 46.44
NMT 37.77
BT 1:1 35.29
BT 2:1 33.61
BT 3:1 32.24
BT 4:1 31.46
BT NCI:1 30.18

Table 3: BLEU scores for backtranslation experiments as well as earlier SMT and NMT systems

performed by Dowling et al. 2016, 2017 and 2018 for comparison

7.1. Sentence-level BLEU analysis

In order to gain a preliminary insight into specific changes in the MT output brought about by the
introduction of backtranslated data, we performed a sentence-level BLEU analysis. This means
that, rather than solely generating an overall BLEU score for the test document (as is the norm),
an individual BLEU score is given for each sentence. This information can then be used to identify
sentences with the biggest discrepancy in BLEU scores. In Example (6),'® we see the evolution of
a machine-translated sentence as more artificial data is introduced to the NMT training phase. It
can be seen that the baseline system with no artificial data (0:1) matches the reference exactly,
and so achieves a perfect BLEU score. With the first introduction of artificial data (1:1) we see

G
|

that the translation output changes for the worse (‘i’, ‘in” instead of ‘mar’, ‘because’). This leads
to a more literal translation, which is interesting because in general it is reported that NMT is
better equipped to produce fluent, rather than literal, translations (Castilho et al. 2017). The next
highest ratio of artificial data (2:1) shows a similar output, though slightly more grammatical (‘i’
is inflected to be ‘in’ before a vowel). Ratios 3:1, 4:1 and NCI:1 (just over 5:1) see the semantics

of the sentence completely changed (the NCI:1 output could be roughly translated as ‘a summary

16 For all examples, the U and t symbols indicate a drop or increase respectively in BLEU score over the
authentic data (0:1) BLEU score
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cannot be given for these circumstances’). These examples highlight a common issue in NMT -
the output looks perfectly fluent but actually displays a completely different meaning to the

source text (Castilho et al. 2017).

(6)
Source: in summary, the Department’s purpose is:

Irish reference: mar achoimre, is é cuspdir na Roinne:

0:1 (authentic data only): mar achoimre, is é cuspdir na Roinne: BLEU =100
1:1: i achoimre, is é cuspdir na Roinne: BLEU U 10
2:1: in achoimre, is é cuspdir na Roinne: BLEU U 10
3:1: ni feidir achoimre a dhéanamh ar an méid sin BLEU U 90.06
4:1: ni mor achoimre a thabhairt ar an gceist seo BLEU U 90.06
NCI:1: ni feidir achoimre a thabhairt ar na cuinsi seo BLEU U 70.12

Despite somewhat negative results, in Example (7) we see an occasion where backtranslation has
improved the NMT output, both in terms of automatic evaluation and human analysis. With
authentic data only, the NMT system incorrectly translates ‘description’ as tuairisc, ‘report.” The
first addition of artificial data (1:1) produces the MT output cur sios which is an exact match of
the human-translated reference. This is echoed with in the next addition of artificial data (2:1),
but changes to cur sios ar, ‘description of” in experiments with ratios 3:1 and 4:1. This is another
example of NMT appearing fluent (ar is the appropriate preposition in this situation) but
containing differing semantics to the source. However, in the final addition of data (NCI:1), the
MT again outputs the correct translation. This raises the question ‘how much artificial data harms
the MT output, and how much benefits it?’ This could be an indication that if a greater amount

of artificial data were added a higher level of MT accuracy could be gained.

(7)
Source: description.

Irish reference: cur sios.
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0:1 (authentic data only): tuairisc. BLEU = 30.33
1:1: cur sios . BLEU 1 69.67
2:1: cur sios . BLEU 1 69.67
3:1: cursios ar. BLEU 1 90

4:1: cur sios ar . BLEU 1 36.34
NCI:1: cur sios . BLEU " 69.67

8. Conclusions and Future Work

In this paper, we have presented preliminary results of the use of backtranslation as a means of
generating artificial data for EN-GA MT. Despite previous studies on other language pairs
reporting the contrary, we have shown from both automatic and preliminary linguistic evaluation
of the MT output that backtranslation was not successful in improving EN-GA MT using the
current configuration. We can hypothesise a number of reasons for this. Firstly, perhaps our
synthetic datasets were too out-of-domain, given that the NCI corpus contains a mixture of
domains (i.e. literature, legal, news, etc.) and may differ too much from our domain-specific test
set. Possible future work to address this issue could be to identify a monolingual dataset that is
closer in domain to text from DCHG and rerun the experiments using that as a basis for the
artificial parallel corpus. This could provide further insights into the importance of data selection

and domain in MT.

Secondly, the original training dataset available is much smaller than those used by Poncelas et
al. (2018) (1m sentences). To this end, the most obvious approach is to continue to experiment
as the ELRC collects more data. The recent launch of the related project, the European Language
Resource Initiative,'” will further encourage language resource sharing from Irish public bodies

which will result in a larger training corpus.

Thirdly, there may in fact be improvements in quality, but the BLEU evaluation metric is clearly

not equipped to identify them. It could be seen from Example (7) that it is in fact possible for

17https://elri.dcu.ie/ga-ie/
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backtranslation to improve some parts of the MT output. An empirical study by Shterionov et al.
(2018) shows that the disconnect between BLEU and human evaluation may be as much as 50%.
Way et al. (2019, to appear) highlight the shortcomings of BLEU and conjecture that other
methods of evaluation will, particularly those tuned to NMT, will be necessary in the future. With
BLEU offering only a small insight into the quality of MT, it will be important in future work to
experiment with other automatic metrics, for example ChrF3 (Popovic 2015) a character-based
metric that penalises less harshly than BLEU for small inflection errors. As well as automatic
metrics, it will be vital to use more human evaluation to gain insights into the MT output quality.
Human evaluation can be used to ensure that the MT systems designed for public administration
use will be optimised to enhance the task of specific human translators, and will not merely be
tuned to automatic metrics. There are a variety of methods for human evaluation, not merely in
the assessment of the quality of the output, but also in terms of assessing the suitability of MT
systems in a post-editing environment (through the use of eye-tracking technology, calculating

edit-distance, key-strokes etc., e.g. Castilho and Guerberof 2018).

In terms of demand for EN-GA MT, it is important to note that the derogation on the production
of Irish-language documents within the EU is due to lift in 2021. Both nationally and at a European
level, those tasked with EN-GA translation will need to look to technology to help increase
productivity. It is vital, therefore, that MT resources are well-developed, up-to-date and designed

accordingly to meet this demand.
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